

Mark Scheme (Results)

October 2022

Pearson Edexcel International Advanced Subsidiary Level in Physics (WPH11)

Unit 1: Mechanics and Materials

1		
1	B is the correct answer	1
	A is incorrect because acceleration is rate of change of velocity.	
	C is incorrect because speed is the magnitude of velocity.	
	D is incorrect because time taken is the x-axis variable	
2	C is the correct answer	1
	A is incorrect because energy is not a vector	
ļ	B is incorrect because mass is not a vector	
	D is incorrect because power is not a vector	
3	C is the correct answer	1
	A is incorrect because Stokes' law does not apply to all spheres	
ļ	B is incorrect because Stokes' law does not apply to all spheres and applies at	
ļ	all viscosities	
	D is incorrect because Stokes' law applies at all viscosities	
4	A is the correct answer	1
	B is incorrect because the gradient is zero except at one point.	
ļ	C is incorrect because the gradient begins negative and becomes positive.	
	D is incorrect because the positive and negative gradients are constant except at	
	one point.	
5	C is the correct answer	1
ļ	A is incorrect because Young modulus is not the breaking stress of a material	
ļ	B is incorrect because Young modulus is not the density of a material.	
	D is incorrect because Young modulus is not the elastic limit of a material	
6	B is the correct answer	1
ļ	A is incorrect because P is spurious and R is not included	
	C is incorrect because Q is not included	
	D is incorrect because R is not included	
7	C is the correct answer	1
	A & B are incorrect because the vectors have not been added	
	D is incorrect because the resultant is in the wrong direction	
8	C is the correct answer	1
ļ	A is incorrect because the extension is wrong and the force has been neglected	
	B is incorrect because the force has been neglected, or the extension is wrong	
	D is incorrect because the extension has been neglected	
9	A is the correct answer	1
	B is incorrect because the electron is lighter than the proton	
ļ	C is incorrect because the electron is lighter than the proton	
	D is incorrect because the velocity is not inversely proportional to mass	
10	C is the correct answer	1
	A is incorrect because it gives 48% of only the power output.	_
	B is incorrect because it gives is 52% of the power output.	
	D is incorrect because it gives is the total power input.	
	Total for Section A	10

Question Number	Answer		Mark
11(a)	The (vector) sum of all forces (acting on an object) Or The single force that would have the same effect as all the other forces acting together [Treat "net force" as synonym for "resultant force", so no mark]	(1)	1
11(b)	Use of $F = m \ a$ [allow 3.1 kN or 5.5 kN (0.41 or 0.73 (m s ⁻²) respectively)] $a = 3.2 \times 10^{-1} \text{ m s}^{-2}$ Example of calculation $(5.5 - 3.1) \times 10^3 \text{ N} = 7.5 \times 10^3 \text{ kg} \times a$ $a = 2.4 \times 10^3 \text{ N} \div 7.5 \times 10^3 \text{ kg} = 0.32 \text{ m s}^{-2}$	(1) (1)	2
11(c)	Use of $P = W/t$ and $\Delta W = F \Delta x$ [allow $P = F v$] [allow 2.4 kN or 3.1 kN (1.2 × 10 ⁴ or 1.5 × 10 ⁴ (W) respectively)] $P = 2.6 \times 10^{4} \text{ W [or J s}^{-1}]$ Example of calculation $P = W/t = F \Delta x/t = F v$ $= 5.5 \times 10^{3} \text{ N} \times 4.8 \text{ m s}^{-1} = 2.64 \times 10^{4} \text{ W}$	(1) (1)	2
	Total for question 11		5

Question Number	Answer		Mark
12(a)	Use of $\sigma = F/A$	(1)	
	$\sigma = 3.8 \times 10^8 \text{ Pa [accept N m}^{-2}]$ Or		
	$F_b = 170 \text{ N}$		
	Or		
	$A_{\min} = 3.6 \times 10^{-7} \text{ m}^2$	(1)	
	Valid comparison in consistent units and conclusion	(1)	3
	Example of calculation		
	$\sigma = 150 \text{ N} \div 3.97 \times 10^{-7} \text{ m}^2 = 3.78 \times 10^8 \text{ Pa}$		
	3.78 < 4.20 ∴ will not break		
12(b)(i)	Determine gradient of straight line section [straight line ends at 5 mm]	(1)	
	$[\Delta x \ge 3 \text{ mm for gradient}]$ [Allow use of tangent at origin]	(1)	2
	$k = 1.30 \times 10^4 (\text{N m}^{-1})$ [acceptable range to be determined at pre-stand]		
	[1.27 to 1.33][need to see third s.f.]		
	Example of calculation		
	gradient = $60 / 4.6 = 13.0$		
	gradient = $k / N \text{ mm}^{-1}$		
	$k = 13.0 \text{ N mm}^{-1} = 1.30 \times 10^4 \text{ N m}^{-1}$		
12(b)(ii)	Use of $k = EA/x$	(1)	
	$E = 1.3 \times 10^{11} \text{Pa [or N m}^{-2}](\text{ecf from (b)(i))[their (b)(i)} \times 1.01 \times 10^7 + \text{unit]}$	(1)	2
	Example of calculation $E = k x/A$		
	E = R X/A $E = 1.3 \times 10^4 \text{ N m}^{-1} \times 4.00 \div 3.97 \times 10^{-7} \text{ m}^2$		
	$E = 1.3 \times 10^{-11} \text{ Pa}$ $E = 1.3 \times 10^{11} \text{ Pa}$		
	Total for question 12		7

Question Number	Answer		Mark
13(a)	Moments due to force on wheel and force on handle must be equal (magnitude about any point)	(1)	
	Moment is force times (perpendicular) distance [accept " F x " but no other symbols unless in question or defined by candidate]	(1)	
	[Accept for MP1 and MP2 Force × (perpendicular) distance must be same for both moments]		
	Handle is futher from centre of gravity than wheel (so less force for equal moment) [NB independent mark]	(1)	3
13(b)	Uses weight = 400 N	(1)	
	Or Uses x and $(1.5 - x)$ Use of moment = Fx about a stated point [accept pivot point clearly indicated on diagram] Use of principle of moments	(1) (1) (1)	4
	Use of principle of moments $x = 0.3 \text{ m}$ Example calculation Weight = $320 + 80 = 400 \text{ N}$ Taking moments about line of action of 320 N force $400 \text{ N} \times x = 80 \text{ N} \times 1.5 \text{ m}$ $x = 120 \text{ Nm} \div 400 \text{ N} = 0.30 \text{ m}$		
	Total for question 13		7

Question Number	Answer		Mark
14(a)	Use of upthrust = weight of fluid displaced	(1)	
	Use of $\rho = m / V$ [accept use to calculate density of balloon, 0.184 (kg m ⁻³)]	(1)	
	[Correct use of $\rho_{air}gV$ to find resultant can score MP1 and MP2]	(1)	
	Use of $W = mg$	(1)	4
	Resultant force = 0.5 N		
	Example of calculation Upthrust $U = 0.05 \text{ m}^3 \times 1.20 \text{ kg m}^{-3} \times 9.81 \text{N kg}^{-1} = 0.589 \text{ N}$		
	Weight $W = 9.20 \times 10^{-3} \text{ kg} \times 9.81 \text{N kg}^{-1} = 0.090 \text{ N}$		
	Resultant force = $U - W = 0.589 \text{ N} - 0.090 \text{ N} = 0.498 \text{ N}$		
	Resultant force -0.367 iv -0.367 iv -0.476 iv		

14(b)*

This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning.

Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning.

The following table shows how the marks should be awarded for indicative content and lines of reasoning.

IC points	IC mark	Max linkage	Max final
		mark available	mark
6	4	2	6
5	3	2	5
4	3	1	4
3	2	1	3
2	2	0	2
1	1	0	1
0	0	0	0

	Marks
Answer shows a coherent and logical structure with linkages and	2
fully sustained lines of reasoning demonstrated throughout.	
Answer is partially structured with some linkages and lines of	1
reasoning	
Answer has no linkages between points and is unstructured	0

Indicative content:

[Allow "net force" as synonym for "resultant force", accept U, W for upthrust and weight]

• Initially there is a resultant upward force

Or

Upthrust is greater than weight and initially there is no air resistance [accept "drag"]

Balloon accelerates (upwards)

Or

Balloon moves (up) with increasing velocity/speed

- (Downward) air resistance force, (initially zero) increases as velocity/speed increases. (*U* and *W* are constant.)
- Resultant (upward) force decreases so acceleration decreases
- (Eventually) resultant force is zero

Or

(Eventually) upthrust = weight + drag

Or

(Eventually) the forces (on the balloon) are balanced

Balloon moves continues to move (upwards) at constant velocity

Or

balloon moves (upwards) with terminal velocity/speed

Total for question 14

6

10

Question Number	Answer	Mar k
15(a)	Use of correct trigonometry to calculate horizontal component [9.7 cos 49° or 9.7 sin 41° seen]) Use of $s = u t + \frac{1}{2} a t^2$ with $a = 0$ [i.e. use of $s = v t$] $t = 0.79$ (s) [NB reverse argument scores 2 marks (Rule 4.2)] (1) Example of calculation (1) $v_{\rm H} = 9.70 {\rm m s^{-1}} \times {\rm cos 49^{\circ}} = 6.36 {\rm m s^{-1}}$) $t = 5.00 {\rm m} \div 6.36 {\rm m s^{-1}} = 0.786 {\rm s}$	3
15(b)	Use of correct trigonometry to calculate vertical component [1.5] $(1.5, 1.5) = 0.000$ [1.5] $(1.5, 1.5) = 0.000$ [1.5] Use of $(1.5, 1.5) = $)))) 4
	Total for question 15	7

Question	Answer		Mark
Number			Walk
16(a)	Sum of momenta before (collision) = sum of momenta after (collision) Or Total momentum before (a collision) = total momentum after (a collision) Or Total momentum remains constant Or		
	The momentum of a system remains constant Provided no external/unbalanced/resultant force acts (on the system) Or in a closed/isolated system	(1) (1)	2
16(b)	Use of $p = m v$	(1)	
	Momentum before collision = 810 N s and after collision = 780 N s Or Expected velocity = 6.5 m s^{-1} Correct conclusion based on comparison of candidate's momenta/speeds Example of calculation Momentum before collision: $65 \text{ kg} \times 5.5 \text{ m s}^{-1} + 60 \text{ kg} \times 7.5 \text{ m s}^{-1} = 807.5 \text{ N s}$ Momentum after collision: $(65 + 60) \text{ kg} \times 6.2 \text{ m s}^{-1} = 775.0 \text{ N s}$ $775 \neq 808 \therefore$ momentum not conserved	(1)(1)	3
16(c)	Forces acted between skaters (during the collision) Or External forces [accept friction (between skates and ice)] act on the skaters (during the collision) Work done (by forces) during the collision was not recovered Or Work done (by forces) during the collision was dissipated Or Work done (by forces) transfers (kinetic) energy to thermal energy [accept "heat"]	(1)	2
	Total for question 16		7

Question Number	Answer		Mark
17(a)(i)	Use of $W = m g$ Use of Newton first law 6.9×10^{-8} (N) Example of calculation $W = 1.15 \times 10^{-8} \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.13 \times 10^{-7} \text{ N}$ $D = W - U = 1.13 \times 10^{-7} \text{ N} - 4.37 \times 10^{-8} \text{ N} = 6.91 \times 10^{-8} \text{ N}$	(1) (1) (1)	3
17(a)(ii)	Use of $F = 6 \pi \eta r v$ [allow diameter for radius] Terminal velocity = 5.7×10^{-3} m s ⁻¹ (ecf from (a)(i)) ["show that" value gives 5.73×10^{-3} m s ⁻¹] Example of calculation $D = 6\pi \times 1.41 \times 10^{-3}$ Pa s × 4.6 × 10 ⁻⁴ m × $v = 6.91 \times 10^{-8}$ N $v = 6.91 \times 10^{-8}$ N ÷ $(6\pi \times 1.41 \times 10^{-3}$ Pa s × 4.6 × 10 ⁻⁴ m) = 5.65×10^{-3} m s ⁻¹	(1) (1)	2
17(b)	Viscosity increases (with lower temperature) so <u>drag</u> force increases (for given velocity) OR Viscosity increases (with lower temperature) so (terminal) velocity slower for given <u>drag</u> force [allow reference to $F = 6\pi \eta \rho v$] Density increases (with increasing depth) so <u>upthrust</u> increases [ignore "upthrust is constant"] Weight remains constant [do not accept "mass"] Terminal velocity reduces (with increasing depth) (dependent on MP1 or MP2) [accept "constant" velocity]	(1) (1) (1) (1)	4
	Total for question 17		9

Question Number	Answer		Mark
18(a)	Force from truck to the left [accept 1.2×10^5 (N)] Air resistance to the left [accept 3.0×10^4 (N)][do not accept "viscous drag"] Force from rails to the right [accept 1.5×10^5 (N)] [withhold one mark if more forces than three][if magnitudes used ignore names of forces] Total length of arrows towards the left equals length of arrow to the right [to within 2 mm using measuring tool][dependent on any three horizontal forces, do not check unless lengths look close by eye]	(1) (1) (1) (1)	4
	force from truck air resistance weight		
18(b)	A Newton's third law pair of forces • Forces of equal magnitude that act in opposite directions [do not accept "equal and opposite reaction"][accept act for equal times] • Same type of force • (Acting on) different bodies These two forces both act on the engine [accept "on the same body"] One force is gravitational [do not accept "weight"]and the other is a contact force	(1) (1) (1) (1) (1)	5
	Total for question 18		9

Question Number	Answer		Mark
19(a)	Use of $\Delta W = F \Delta x$ [allow any dimensionally correct variation, <i>e.g.</i> involving trig] $\Delta W = 3.2 \times 10^4$ (J) [do not allow if cos 4° used in MP1, gives 3.217].] Example of calculation $\Delta W = 150 \text{ N} \times 215 \text{ m} = 3.23 \times 10^4 \text{ J}$	(1) (1)	2
19(b)(i)	Use of correct trigonometry to calculate Δh Or Use of correct trigonometry to calculate component of g along slope, [61.6 (N)] Use of $\Delta E_{\rm grav} = m g \Delta h \left[\Delta E_{\rm grav} = 90 \text{ kg} \times 9.81 \times 215 \text{ m} \times \sin 4.0^{\circ} \text{ scores MP1\&2} \right]$	(1)	
	Total work done = work done against gravity + work done against air resistance Work against air resistance = 2.0×10^4 J (allow ecf from (a)) ["show that" value gives 1.68×10^4 J] Example of calculation $\Delta h = 215 \text{ m} \times \sin 4.0^\circ = 15.0 \text{ m}$ $\Delta E_{\text{grav}} = 90 \text{ kg} \times 9.81 \times 15.0 = 1.32 \times 10^4 \text{ J}$	(1) (1)	4
19(b)(ii)	$W = 3.20 \times 10^4 \mathrm{J} - 1.32 \times 10^4 \mathrm{J} = 1.88 \times 10^4 \mathrm{J}$ Force of gravity and air resistance are the only significant forces acting (to oppose the motion of the bicycle) Or Frictional forces (in the bearings of the bicycle) are negligible [accept zero, do not accept friction between bicycle and slope/ground] Or Work done against frictional forces (in the bearings of the bicycle) is negligible [accept zero]	(1)	1
19(c)	No work done against (force of) gravity Or All work done against air resistance Or	(4)	
	No backward force due to gravity so resultant force acts Speed increases [MP2 dependent on MP1]	(1) (1)	2
	Total for question 19		9